The .NET Architecture

Objectives

“Microsoft .NET is based on the .NET Framework, which consists of
two major components: the Common Language Runtime (CLR)
and an extensive set of Framework Class Libraries (FCL). The
CLR defines a common programming model and a standard type
system for cross-platform, multi-language development.”

e CLR-based execution
 Application designs

CLR-based execution...

Influences

.NET is the result of many influences...

OOP

component-based
design

_/
ﬁR_

JVM

Web

n-tier design

NET Iis multi-language

« .NET supports VB, C# (C-sharp), C++, J# (Java 1.2), Eiffel, etc.

code.vb code.cs code.cpp

« FCL

app.exe

NET is cross-platform

« Compiled .NET apps run on any supported platform:

APP.exe

How iIs cross-platform achieved?

 Cross-platform execution realized in two ways:

1. apps are written against Framework Class Library (FCL), not
underlying OS

2. compilers generate generic assembly language which must be
executed by the Common Language Runtime (CLR)

(1) FCL

« Framework Class Library
— 1000's of predefined classes
— common subset across all platforms & languages
— networking, database access, XML processing, GUI, Web, etc.

« Goal?
— FCL is a portable operating system

(2) CLR-based execution

« Common Language Runtime must be present to execute code:

APP.exe

other FCL
components

'

obj code

Implications of .NET's execution model

1. Clients need CLR & FCL to run .NET apps
— available via Redistributable .NET Framework
— 20MB download
— runs on 98 and above, NT (sp6a) and above

2. Design trade-off...
+ managed execution (memory protection, verifiable code, etc.)
+ portability:
— slower execution?

Application design...
Monolithic

« Monolithic app: all source code compiled into one .EXE

4 N

APP.exe < > i

— *not* the norm on Windows...

Component-based

« Component-based app: .EXE + 1 or more .DLLs

/—
P T

GUl.exe

— standard practice on Windows...

Why component-based?

« Many motivations:
— team programming
— multi-language development (I like VB, you like C#)
— code reuse (e.g. across different .EXES)
— Iindependent updating (update just component X)

* FCL ships as a set of components!

Assemblies

« .NET packages components into assemblies

« 1assembly =1 or more compiled classes
— .EXE represents an assembly with classes + Main program
— .DLL represents an assembly with classes

|
|
_L code.cs

l

.EXE/ .DLL

assembly |

CLR-based execution revisted

CLR must be able to locate all assemblies:

EXE

obj code

CLR

I

.DLL

Core FCL
assembly

other FCL
assemblies

Assembly resolution
e How does CLR find assemblies?

« For now, simple answer is sufficient:
— our DLLs must reside in same directory as our EXE
— FCL assemblies reside in GAC
— CLR looks in GAC first, then EXE's directory...

? i assembly g@]@
GA(: 4 File Edt View Favorites Tools Help ﬂ'

Address |2 CAMWINDO WS assembly M a G0
Global Assembly Mame Type Yersion Culture | Public Key Toke #
ﬂ@lSystem.Drawing Mative Images 1.0.3300.0 b03fsF7F11ds0a
ﬂFg]System.Drawing 1.0.3300.0 b03fsF7F11ds0a
° GAC — G I 0 b al AS sem b | y Cac h e s#15ystem,Drawing.Design ~ Mative Images 1.0,3300.0 bO3f5F7F1 1d50a
ﬂFg’ISystem.Drawing.Design 1.0,3300.0 bO3fsF7F11ds0a
EgSystem.EnterpriseServices 1.0.3300.0 bO3fsF7F11ds0a
. T . T T 4] System. Managenment 1.0.3300.0 BO3FSF7F11d50a
- C . \W I n d OWS O r C .\W I n N T d I re Cto ry HF&ISystem.Messaging 1.0.3300.0 bO3FSF7F11dS0a
ﬂﬁélSystem.Runtime.Remoting 1.0.3300.0 b77a5c561934e
:@lSystem.Runtime.SeriaIiza.. 3 1.0.3300.0 bO3FSF7F11d50a
ﬂFg]System.Security 1.0.3300.0 b03fsF7F11ds0a
ag'lSystem.ServiceProcess 1.0.3300.0 bO3fsF7F11d50a
H@‘System.Web 1.0,3300.0 bDSFSF?FIldSDa-
ﬂ@lSystem.Web.RegularExp... 1.0.3300.0 bO3FEF7F11d50a o
< >

 Observations:
— explorer yields a flat view of GAC
— command-shell yields actual representation
— GAC can hold different versions of the same assembly
— some assemblies have been pre-JIT ("native image")
— tamper proof via digital signatures...

Summary

« .NET architecture is:
— multi-language
— cross-platform
— based on the CLR, FCL, and JIT technology

 Application designs are typically multi-tier

 Application designs yield component-based development
— .NET components are packaged as assemblies

